Studente: _ Data: Ora:		Docente: silvia pellegrini Corso: BIOTECNOLOGIE 2014-15 Libro: Guerraggio: Matematica per le scienze	Attività: Secondo test intermedio - Biotecnologie 2014-15
1.	Calcola la derivata de $f(x) = \ln \ln (13x)$ $f'(x) = \square$	ella seguente funzione:	
2.	Usa l'integrazione per $\int (7x^2 - 12x) e^{-x^2}$	r parti per calcolare l'integrale.	
	$\int (7x^2 - 12x) e^{2x} dx$ (Usa C come costant	:=	

Student	te:
Data:	
Ora:	

Docente: silvia pellegrini

Corso: BIOTECNOLOGIE 2014-15 Libro: Guerraggio: Matematica per le Attività: Secondo test intermedio -

Biotecnologie 2014-15

Rispondi alle domande sulla funzione f di cui viene riportata la derivata. 3.

$$f'(x) = \frac{x^2(x-2)}{x+3}, x \neq -3$$

- (a) Quali sono i punti critici di f? Scegli la risposta corretta e, se necessaio, completala.
- $\bigcirc A$. $x = \bigcirc$ (Se necessario, usa un punto e virgola per separare le risposte.)
- OB. La funzione non ha punti critici.
- **(b)** In quali intervalli f è crescente?

$$\bigcirc$$
A. $(-3,0]$ e $[0,2]$

OB.
$$(-\infty, -3)$$
 e $(-3,0]$

OC.
$$(-\infty, -3)$$
 e $[2, +\infty)$

OD. La funzione f non è mai crescente.

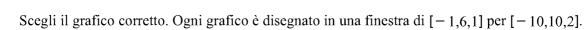
In quali intervalli f è decrescente?

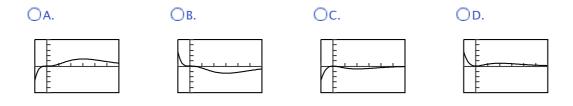
$$\bigcirc A. (-3,0] e [0,2]$$

OB.
$$[0,2] e [2,+\infty)$$

$$\bigcirc$$
C. $(-\infty, -3)e[2, +\infty)$

- OD. La funzione f non è mai decrescente.
- (c) In quali punti la funzione ammette massimi locali?
- \bigcirc A. $x = \bigcirc$ (Se necessario, usa un punto e virgola per separare le risposte.)
- OB. La funzione non ha un massimo locale.


In quali punti la funzione ammette minimi locali?


- \bigcirc A. $x = \bigcirc$ (Se necessario, usa un punto e virgola per separare le risposte.)
- OB. La funzione non ha un minimo locale.

Studente: _ Data: Ora:		Docente: silvia pellegrini Corso: BIOTECNOLOGIE 2014-15 Libro: Guerraggio: Matematica per le scienze	Attività: Secondo test intermedio - Biotecnologie 2014-15
4.	Trova il valore del massimo e del minimo assoluti della funzione nell'intervallo assegnato. Disegna il grafico della funzione. $g(x) = 2x^3 e^{-x}, -1 \le x \le 6$		
	Scegli la risposta corretta e, se necessario, completala. (Se necessario, arrotonda alla terza cifra decimale.)		
	OA. Il massimo as	ssoluto è in $x = 1$.	
	OB. Il minimo ass	soluto è in $x = 1$.	

 \bigcirc C. Il massimo assoluto è in x = 0 e il minimo assoluto è in x = 0.

OD. La funzione non ammette né massimo né minimo assoluti.

Studente:	Docente: silvia pellegrini	Attività: Secondo test intermedio -
Data:	Corso: BIOTECNOLOGIE 2014-15	Biotecnologie 2014-15
Ora:	Libro: Guerraggio: Matematica per le	
	scienze	

5. Scrivi i polinomi di Taylor di ordine 0, 1, 2 e 3 generati da f in a.

$$f(x) = \cos x, a = \pi / 4$$

Il polinomio di Taylor di ordine 0 è

$$\bigcirc A. \quad P_0(x) = \frac{\sqrt{2}}{2}$$

$$OB. P_0(x) = 1$$

$$\bigcirc$$
 C. $P_0(x) = 0$

$$OD. P_0(x) = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)$$

Il polinomio di Taylor di ordine 1 è

$$P_1(x) = \frac{\sqrt{2}}{2}$$

$$\bigcirc B. \quad P_1(x) = \left(x - \frac{\pi}{4}\right)$$

OC.
$$P_1(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right)$$

OD.
$$P_1(x) = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)^2$$

Il polinomio di Taylor di ordine 2 è

OA.
$$P_2(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)$$

OB.
$$P_2(x) = \left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right)^2$$

OC.
$$P_2(x) = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)^2 - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^3$$

OD.
$$P_2(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^2$$

Il polinomio di Taylor di ordine 3 è

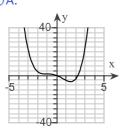
5.

(cont.)

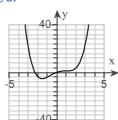
OA.
$$P_3(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right) + \frac{\sqrt{2}}{12} \left(x - \frac{\pi}{4} \right)^2$$

OB.
$$P_3(x) = \left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right)^2 - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4}\right)^3$$

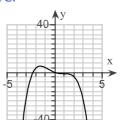
OC.
$$P_3(x) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4}\right)^2 + \frac{\sqrt{2}}{12} \left(x - \frac{\pi}{4}\right)^3$$

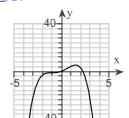

OD.
$$P_3(x) = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right)^2 - \frac{\sqrt{2}}{4} \left(x - \frac{\pi}{4} \right)^3 + \frac{\sqrt{2}}{12} \left(x - \frac{\pi}{4} \right)^4$$

Sotto è riportata la derivata prima di una funzione continua y = f(x). Trova y ". Utilizza i punti critici di f, il comportamento in tali punti e gli intervalli in cui la curva è crescente e decrescente per determinare il grafico di f.


$$y' = (x-1)^2(2x+3)$$

Qual è il possibile grafico di y = f(x)?


OA.


Ов.

Oc.

OD.

7. Differenzia.

$$f(x) = \ln\left(\frac{x^5 - 2}{x}\right)$$

$$f'(x) =$$

8.

Calcola $\int \frac{1}{(x) \ln(x)} dx$.

$$\int \frac{1}{(x) \ln(x)} dx = \boxed{}$$

(Usa C come costante arbitraria.)

Docente: silvia pellegrini

Corso: BIOTECNOLOGIE 2014-15

Libro: Guerraggio: Matematica per le

scienze

Attività: Secondo test intermedio -

Biotecnologie 2014-15

9. Trova l'area A compresa fra le curve $y = \ln x$ e $y = \ln 3x$ nell'intervallo [1, 3] dell'asse x.

$$A = \bigcap$$
.

(Inserisci una risposta esatta.)

10. Calcola l'integrale.

$$\int \frac{x^3 dx}{x^2 - 64}$$

$$\int \frac{x^3 dx}{x^2 - 64} = \square$$

(Usa C come costante arbitraria.)

11. Calcola f'(x).

$$f(x) = 21^{x^2} + (x^2)^{21}$$

$$f(x) =$$
 (Scrivi il risultato.)

Esprimi l'integranda con le frazioni parziali e calcola l'integrale.

$$\int \frac{x+3}{x^2+5x-6} dx$$

Scegli la risposta corretta e, se necessario, completala.

(Usa numeri interi o frazioni.)

A.
$$\int \frac{x+3}{x^2+5x-6} dx = \int \left[\frac{1}{x+3} + \frac{1}{x-3} \right] dx$$

OB.
$$\int \frac{x+3}{x^2+5x-6} dx = \int \left[\frac{1}{x^2+6} + \frac{1}{x^2-1} \right] dx$$

OC.
$$\int \frac{x+3}{x^2+5x-6} dx = \int \left[\frac{1}{x+6} + \frac{1}{x-1} \right] dx$$

Calcola l'integrale.

$$\int \frac{x+3}{x^2+5x-6} dx = \boxed{}$$

(Usa c come costante arbitraria.)

Studente: _____ Data: _____ Ora:

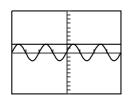
Docente: silvia pellegrini

Corso: BIOTECNOLOGIE 2014-15

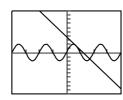
Attività: Secondo test intermedio - Biotecnologie 2014-15

Libro: Guerraggio: Matematica per le

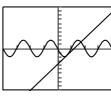
- 13. (a) Trova l'equazione della retta tangente al grafico della funzione per il valore di x indicato.
 - (b) Disegna la curva e la retta tangente.

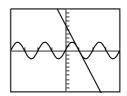

$$y = 4 \sin x \cos x; x = \frac{\pi}{3}$$

(a) Trova l'equazione della retta tangente al grafico della funzione per il valore di x indicato.


 $y = \bigcap$ (Scrivi il risultato inserendo opportunamente π .)

(b) Scegli il grafico che rappresenta correttamente la curva e la tangente.


OA.


○B.

Oc.

Od.

La finestra grafica è impostata su $\left[-2\pi, 2\pi, \frac{\pi}{2}\right]$ per [-10, 10, 1].

14. Utilizza gli sviluppi di Taylor per calcolare il limite.

$$\lim_{x \to 0} \frac{\sin 2x^2}{1 - \cos 3x}$$

$$\lim_{x \to 0} \frac{\sin 2x^2}{1 - \cos 3x} =$$
 (Semplifica la risposta.)

15. Calcola l'integrale.

$$\int_3^7 x^{\pi-1} dx$$

$$\int_3^7 x^{\pi-1} dx = \square$$

(Inserisci una risposta esatta inserendo, se necessario, π .)

Data:		Docente: silvia pellegrini Corso: BIOTECNOLOGIE 2014-15 Libro: Guerraggio: Matematica per le scienze	Attività: Secondo test intermedio - Biotecnologie 2014-15
l.	$\frac{1}{x \ln{(13x)}}$		
	$\frac{e^{2x}}{4}(14x^2 - 38x +$	19) + C	
3.	A, 0;2 C A B A, 2		
1.	C, 2,689, 3, -5,43	7, -1	
5.	A C D C		
5.	2(x-1)(3x+2)		
7.	$\frac{4x^{5}+2}{x(x^{5}-2)}$		
3.	ln ln x +C		
).	2 ln 3		
10.	$\frac{x^2}{x^2} + 32 \ln x^2 - 6 $	4 + C	

10.
$$\frac{x^2}{2} + 32 \ln |x^2 - 64| + C$$

11.
$$21^{x^2}2x \ln 21 + 42x^{41}$$

12.
$$C, \frac{3}{7}, \frac{4}{7}$$
 $\frac{3}{7} \ln |x+6| + \frac{4}{7} \ln |x-1| + C$

Studente: ______ Docente: silvia pellegrini Attività: Secondo test intermedio - Corso: BIOTECNOLOGIE 2014-15

Ora: _____ Libro: Guerraggio: Matematica per le scienze

$$\frac{2\pi}{3} + \sqrt{3} - 2x$$
B

$$\frac{4}{9}$$

15.
$$\frac{1}{\pi}(7^{\pi}-3^{\pi})$$